A Framework for Generating High Throughput CNN
Implementations on FPGAs

Hanqing Zeng
University of Southern California
Ming Hsieh Department of Electrical Engineering
zengh@usc.edu

Chi Zhang
University of Southern California
Department of Computer Science

zhan527@usc.edu

ABSTRACT

We propose a framework to generate highly efficient accelerators
for inferencing on FPGAs. Our framework consists of multiple
algorithmic optimizations for computation complexity and commu-
nication volume reduction, a mapping methodology for efficient
resource utilization, and a tool for automatic Verilog generation.
The algorithmic optimizations improve throughput of frequency
domain convolution so as to satisfy a given set of hardware con-
straints. While the Overlap-and-Add (OaA) technique has been
known, it performs "wasted" computation at the edges. We propose
a novel Concatenate-and-Pad (CaP) technique, which improves
OaA significantly by reducing the "wasted" computation on the
padded pixels. The proposed CaP used in conjunction with OaA
enables us to choose a fixed FFT size at design time, and achieve low
computation complexity for layers with various image sizes and
kernel window sizes. We also develop a novel frequency domain
loop tiling technique to further boost the throughput by improving
data reuse. Our mapping methodology optimizes the architecture
for the target device by fast design space exploration. We quantita-
tively categorize FPGAs by capturing their DSP resources, on-chip
memory size and external memory bandwidth into a device coeffi-
cient. We identify the optimal architectural parameters based on
the tradeoff between computation and communication cost. Our
framework includes a tool to automatically generate fully synthe-
sizable Verilog. We demonstrate the framework by generating
high throughput accelerators for state-of-the-art CNN models on
Intel HARP heterogeneous platform. Using our framework, we
achieve throughput of 780.6 GOPS, 669.1 GOPS and 552.1 GOPS
for AlexNet, VGG16 and FCN-16s respectively. These correspond
to 6.8% (AlexNet) and 4.9x (VGG16) improvement compared with
the state-of-the-art implementations.

Ren Chen
University of Southern California
Ming Hsieh Department of Electrical Engineering
renchen@usc.edu

Viktor Prasanna
University of Southern California
Ming Hsieh Department of Electrical Engineering
prasanna@usc.edu

KEYWORDS

Convolutional Neural Networks; Algorithmic Optimization; Hard-
ware Mapping; Software-Hardware Co-design; FPGA;

ACM Reference Format:

Hangqing Zeng, Ren Chen, Chi Zhang, and Viktor Prasanna. 2018. A Frame-
work for Generating High Throughput CNN Implementations on FPGAs. In
FPGA’18: 2018 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, February 25-27, 2018, Monterey, CA, USA. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3174243.3174265

1 INTRODUCTION

Convolutional Neural Networks (CNNs) are one of the most influen-
tial innovations in machine learning and computer vision [9, 15, 16].
With proliferation of deep learning models, the complexity and di-
versity of state-of-the-art CNNs has increased significantly.

Several challenges exist in accelerating CNNs on FPGAs:

o Computation complexity: Convolution layers of CNNs perform
computationally expensive operations.

e Hardware efficiency: Efficiently accelerating various convolu-
tion layers is hard, due to the large variation of CNN model
parameters across layers. The problems to be addressed are:

— Reconfiguration: Hardware runtime reconfiguration can po-
tentially meet the diverse computational requirements of
various layers. However, time and resource overhead are
incurred to support the flexibility in hardware.

— Wasted computation: Using fixed hardware for acceleration
avoids reconfiguration overhead. However, significant amount
of computation can be wasted due to padding.

— Data reuse: Given an on-chip memory of limited size, the
accelerator needs to efficiently reuse on-chip data so as to
reduce the communication volume to external memory.

Motivated by the above challenges, we propose a framework to

generate high throughput accelerators for diverse CNN models. The
inputs of the framework are the CNN model parameters (image size,
kernel filter window size, number of input and output feature maps)
and the FPGA device meta data (DSP resources, on-chip memory
size and external bandwidth). The output is the automatically gen-
erated architecture on the target device specified in Verilog. To
address the computation complexity challenge, our framework alle-
viates the computation burden of spatial convolution by frequency
domain convolution. To address the hardware utilization challenge,

we solve the problems in reconfiguration, wasted computation and
data reuse by multiple algorithmic optimizations. The Overlap-and-
Add (OaA) operation has been used in [21] to implement frequency
domain convolution with a fixed-size FFT module. We significantly
improve the OaA approach by a novel Concatenate-and-Pad (CaP)
operation. Compared with OaA, CaP achieves much lower compu-
tation complexity by filling the paddings with pixels from other
images within the same batch. By applying CaP in conjunction with
OaA, we identify a fixed FFT size in design time. Thus, without run-
time reconfiguration, the accelerator achieves high throughput for
layers with diverse image sizes and kernel filter window sizes. We
further propose the frequency domain loop tiling technique which
partitions the data blocks returned from the CaP-OaA step. Total
communication volume to external memory is reduced as a result
of increased reuse of on-chip data. In summary, our algorithmic op-
timizations perform light weight data layout rearrangement so that
data from various layers are efficiently blocked into identical shapes
before loaded onto FPGA. To optimize the architecture based on
the FPGA resources, we then propose a hardware mapping method-
ology. A simplified performance model leads to fast design space
exploration, which identifies the optimal architectural parameters
by saturating the computation or communication capacity of the
target device. Finally, a tool is developed to automatically generate
implementations in Verilog. Our main contributions are:

e We propose algorithmic optimizations to improve throughput:
- Concatenate-and-Pad (CaP) operation, a dual of Overlap-

and-Add (OaA), which significantly improves the OaA based
approach by reducing computation on paddings.

— A data blocking methodology, which enables a fixed size FFT
module to achieve low computation complexity for layers
with various image and kernel window sizes.

- Frequency domain loop tiling, which increases reuse of on-
chip data by partitioning the feature map dimensions.

e We propose hardware mapping that incorporates the above
algorithmic optimizations:

- A generic architecture, which accelerates diverse CNNs on
the target device without runtime reconfiguration.

- A device coefficient, which measures the computation and
communication capacity of the target FPGA by on-chip DSP
resources, memory size and external bandwidth.

— Fast design space exploration methodology, which identifies
optimal architectural parameters on the target device.

o We develop a code generation tool that outputs fully synthe-
sizable Verilog based on the resulting hardware mapping.

e We show that on Intel HARP platform, our techniques lead to
throughput of 780.6 GOPS, 669.1 GOPS and 552.1 GOPS for
AlexNet, VGG16 and FCN-16s respectively. The throughput
corresponds to 6.8X (AlexNet) and 4.9x (VGG16) improvements
compared with the state-of-the-art designs.

2 BACKGROUND

2.1 Frequency Domain Convolution and
Overlap-and-Add (OaA)

We start from reviewing the convolution algorithm for 2D matrices.
Let I (shape: limg X limg) and K (shape: ly¢r, X liery) be the
input and kernel matrices. Let M (shape: ll{mg x 1/) be the output

img

. Overt (1) & pad
o_ @’lkern*l (Pi(,’}"u)

lkern —1
.

@. Fourier transform

g @. Hadamard product

> @®. Inverse Fourier transform
@. Sum of overlapping pixels

=]
©
=

limg + lkern -1

Figure 1: Frequency domain convolution using OaA

matrix. After transforming I and K into frequency domain repre-
sentation, the sliding window operation of space convolution turns
into the Hadamard product operation (o). Equation 1 summarizes
the algorithm for frequency domain convolution, where F and
F~! denote Fourier transform and its inverse operation.

M=1%K=F(F(I)o F(K)) (1)
To perform the Hadamard product operation, dimensions g,
Ikern of I, K need to be zero-padded to the same size before Fourier
transform. When l; g is large (as is often the case for the first few
convolution layers of a CNN), computing FFT on the complete I is
not efficient. The Overlap-and-Add (OaA) technique [5] addresses
the problem by partitioning I before the Fourier transform step.
The following describes the procedures of computing I * K using
OaA. Suppose we convolve I with K using N-point 2D FFT units
(where N > lpp., — 1). First, we partition I into Pl”]’ of shape
Ipart XIpars (Where lpgrs +lgern, —1 = N). Then, after zero padding
P:? to shape N X N, we compute the intermediate output matrices
Pg;” using Equation 2. The final output matrix M is obtained by
placing Plfj’;t so that their up-left corners (pixel (0, 0)) are located
at pixels (i - lpart,J + lpart) of M. Value of each pixel in M is the
sum of the overlapping pixels in Pz?t, as shown in Equation 3 and
Figure 1.

pout - rl(f(P;'j; o F(K)) ()

Mipllgl = Y (PO [p = i+ lpard)(q = J - lpart))
L]
0<p—i-l <l ®
where { part part
0<q—Jj lpart <lpart
Value enclosed by square brackets ([*][*]) indicates the pixel
index within the matrix. All indices i, j, p, q start from 0.
We define operators © and @. Operation ©Y(I) partitions I into
matrices of shape y X y; @ *(P) generates a large matrix from a set
of matrices {P} with x pixels overlapped, based on Equation 3.

2.2 Convolution Layers Using OaA

A convolution layer operates on a set of I and K, and outputs a set
of M. Define I'¥¢7 Klaver and pMlaVer a5 the high dimensional
arrays of input, kernel filters and output feature maps of a layer.
For batch processing, rlayer glayer anq prlaver are of dimension
Batch X fin X limg®, fout X fin X lgern? and Batch X four X zgmgz
respectively, where fin, fou: are number of input, output feature

maps. Let b, n and m index into the Batch, fi, and f,y,; dimensions.
Equation 4 specifies the operations of a convolution layer.

Y
n<fin
Algorithm 1 shows the operations of a convolution layer using
0aA. Since K'a¥¢" is fixed for a trained CNN, we calculate Kf7¢4 =
F(K'aver) prior to the CNN inferencing computation.

Algorithm 1: Batch processing of a convolution layer using
the OaA technique
Input:1'9Y¢" of shape Batch X fin X limgz
Kfrea of shape four X fin X N2
Output: M'YeT of shape Batch X fous X li’mg2
1 for b = 0 to (Batch — 1) do

2 for i, j iterating matrices of elP“”(IIljayer) do
3 for n =0to (fin — 1) do
in,freq in,padded
4 Pn’ njc F (Pn, Y)
5 for m = 0 to (four — 1) do
6 forn=0to (fin — 1) do
// Element-wise MAC operation
’ in,freq freq
7 P’ Pn,i,j °Kmn
out,freq out,freq ,
8 m, i, j - Pm, i,j P
out -1 pout.freq
9 | Py s F By)
10 for m = 0 to (four — 1) do
no| | M e ol ipgut)

» return M!ayer

-

2.3 CNN Applications and Models

Feature extraction is fundamental to many applications. With little
preprocessing on input images, CNNs extract high dimensional
features associated with receptive fields of various sizes. Thus,
variations of CNNs can be developed for specific applications.

We select three large scale state-of-the-art CNNs: AlexNet [9],
VGG16 [15] and FCN-16s [11]. AlexNet and VGG16 can perform the
tasks of feature extraction as well as image classification. FCN-16s is
designed specifically for image segmentation. For feature extraction
of AlexNet and VGG16, we execute all the convolution, ReLU and
pooling layers, and skip the final fully connected layers. The input
images can be of any [; ;g value. For image classification of AlexNet
and VGG16, we execute all the layers including the fully-connected
layers. The input images are scaled to be 224 X 224 pixels before
feeding into the networks. For semantic segmentation of FCN-16s,
we deploy deconvolution layers to replace fully connected layers.
FCN-16s takes images of any ;g4 value as its input.

The above three CNNs are representatives of a wide range of
recently developed deep CNNs. In general, the model parameters
limg»lkern» fin and fou; change dramatically from the first con-
volution layer to the last. As an example, Table 1 summarizes the
variation of these parameters for AlexNet, VGG16 and FCN-16s.

Table 1: Variation of model parameters

maxlimg maxfi, maxfour
CNN Conv. Layers Ilrern o limg minfm min f;’m
AlexNet 5 11,5,3 17 128 4
VGG16 13 3 16 170 8
FCN-16s 18 7,3,1 50 1365 64

3 ALGORITHMIC OPTIMIZATIONS

Due to the large variation of Iy, limg, fin and fout, using a fixed
architecture to accelerate various CNN models, or even for various
layers of the same CNN model is very challenging. We show in
this section three algorithmic optimizations to block input data
into identical shapes after data layout rearrangement. As a result,
computation complexity and communication cost are reduced, and a
fixed hardware architecture (Section 4) on a target FPGA efficiently
accelerates various CNNs. We show the procedure of hardware
mapping and performance analysis in Section 5.

3.1 OaA Using Fixed FFT Size

For native frequency domain convolution, the FFT size is equal
to (limg + lkern — 1) and FFT is applied to the complete I at once
without partitioning. The native approach is hard to be realized by
accelerators, as hardware does not efficiently support FFT of arbi-
trary sizes. Previous work [21] addressed the hardware limitation
by using the OaA technique. Their complexity analysis was based
on 2D convolution without considering the f;, and fo,; dimen-
sions. We show in this section a more accurate complexity analysis
on high dimensional convolution performed by a CNN layer. We
also discuss how to select an appropriate FFT size for various I ;.

According to Algorithm 1, for an FFT size N, number of opera-
tions performed by a convolution layer is calculated as:

Orotal = (Opart,FFT + Opart, MAC *+ Opart,IFFT

©)

limg ~|2

+ Opart,OaA) ' [m

where:

Opart,FFT =C1-N?-1ogN - fin
Opart,1FFT = C1 - N? -1og N - four
Opart,MAC =Cy “N%. fin . fout
Opart,OaA =C3-N- (lkern - 1) : fout

C, are constants reflecting the cost of addition or multiplication.

We perform the following approximation to Equation 5: (1) Ig-
noring Opart, FFT and Opgrr, [rFT: OaA performs partitioning of
matrix I (jng: order of 10! or 10%), so it is reasonable to assume N
to be in the order of 10. Observing that f;, and foy; are typically
in the order of 102, the coefficient log N of Opart,FFT (Opart,IFFT)
is negligible compared with the coefficient fout (fin) of Opart, mac-
(2) Ignoring Opart,0aa: As required by OaA, (lgern, — 1) should be
less than N. So Opart,0a4 < C3 N2 four < Opart,MAc- (3) Ignor-
ing the ceiling function: We will discuss the effect of [+] in detail
in Section 3.2. We approximate Equation 5 by:

N =16 =

lkern =3 : | computation

timg = 8,18 ;| Poh @ cne

lpan=16—3+1_____|l__ O [8/14F

- | | | =33%

I | pin | pin | (18/14)
| Pin | | 1,0 : 11 : W

OL__%oL___1 ___ 1 —a1%

14 14

Ratio of useful

£35] mmm AlexNet 5 1.00
E 3.0 vaao BN AlexNet
g FONIGs VGG16
5 0.75 ' i
2 25 =~ 2 FCN-16s
ot z
£ 20 .
El 0504 32 -
=12 © g =5
2 52 _aZ
T 2. 2 S s° I
@ L B % S 3]
S 1015 2. 2 Qs 005] 5
2 a5° 3 .25
5} S 3 . %
05 58 WS
P
0.0

8 16 32 64 8 16 32 64
FFT Size N FFT Size N
(a) OaA Approach (b) CaP-OaA Approach

Figure 2: Number of operations for three CNNs. For AlexNet,
we exclude the first convolution layer, as 8-point FFT cannot
be applied to I, of 11 using OaA. The images input to the
CNNs are of size 224 X 224, 224 x 224 and 500 x 500 for AlexNet,
VGG16 and FCN-16s respectively.

approx
Ofotar = Co~ fin* fout

. 2
fimg) (6)

1- (Zkern - 1)/N

We conclude that:

(1) Number of operations decreases as N increases;

(2) Benefit of increasing N diminishes when N is sufficiently

larger than (Igep, — 1).

From Table 1, we observe that for the three CNNs, all Ii,.,,
are less than 10 (except the first convolution layer of AlexNet).
Taking the radix-2n FFT architecture [6] as an example, this means
that setting N to be as small as 16 likely results in low enough
computation complexity. Figure 2a shows the number of operations
for AlexNet, VGG16 and FCN-16s according to Equation 5. Number
of operations for OaA using various N (bars) are normalized by
number of operations for spatial convolution (dashed line).

We observe that the best configuration is N = 16. If N keeps
increases, computation complexity increases as opposed to the
conclusion on Equation 6. This is because when N is 32 or 64, value
of N is much larger than ;g of deep layers. Ceiling function in
Equation 5 then comes into picture. We show in Section 3.2 the CaP
operation to address this issue and justify our approximation to the
ceiling function. We also observe that by applying OaA with a 16-
point FFT module, we achieve significant reduction compared with
spatial convolution. OaA using an uniform FFT size thus potentially
processes convolution layers of various I, very efficiently. Note
that our computation complexity is even much lower than the
results in [21]. This is due to an additional optimization to utilize
the imaginary channel for complex number operations (Section 3.4).

3.2 CaP for Reducing Wasted Computations

OaA requires the shape of each partition to be N x N. The analysis
on Equation 6 ignores the useless computation on the zero paddings
of Pl”]l Such approximation is not always valid, as can be seen in
Figure 2a when N = 32 or 64. Two examples are shown in Figure 3.
Scenario 1 is for deep layers when ;4 is small and scenario 2
happens when [, is larger.

One possible solution is to select an appropriate N which fits well
limg of most layers. The first problem is, this technique significantly

Figure 3: Examples showing that the majority of computa-
tion is performed on the padded pixels for OaA using N = 16

|
g Ut cor HEU1 2112 0an AL
@ oo Foa
g @ || 45|16 oW [f==r=bairag
?:D 1 XI P : in
Silaolr Y| 7|l 8||9 |1 1'[0 R

Figure 4: An example showing the CaP technique

limits the choices of N, leaving little freedom for architectural
tuning on a target FPGA (Section 5). More importantly, identifying
such an N value is often impossible. l;;;4 can be of arbitrary value.
This is especially the case for feature extraction applications, where
images are not scaled to a fixed size before fed into the CNNs. An
alternative solution is to mask the padded pixels. This saves number
of operations, but still leads to low resource efficiency in hardware.

Instead of avoiding computation on paddings, we solve the prob-
lem from another perspective by filling the padded pixels with
useful information. Based on Equation 4, out of the two dimensions
involved in I/4Y¢" (Batch and fip,), fin is shared between I'4¥€" and
Klaver Batch is independent of Klaver Thus, we fold the Batch
dimension and expand I to solve the padding issue of OaA.

We call our operation Concatenate-and-Pad (CaP) [19]. Given
a batch of d? images I of equal size ljmg X limg, We arrange the
images I in a d X d mesh, with x pixels of zero paddings between
the vertically or horizontally adjacent images. CaP outputs a large
image fby concatenating multiple input images I. Parameter x
is defined as the padding size of CaP. Parameter d is defined as
the Batch folding factor. Figure 4 illustrates how CaP reduces the
wasted computation of OaA.

We observe the following with respect to the CaP operation.
(1) Aliasing among adjacent images: The OaA operation that fol-
lows CaP may apply kernel windows covering pixels of multiple
images (Step 2 in Figure 1 and step OaA in Figure 4). It can be shown
that aliasing among adjacent I in I can be avoided iff x > gy, — 1.
(2) Duality of the OaA and CaP operations: OaA partitions im-
ages, and CaP combines images. OaA processes a set of matrices
by overlapping pixels (Step 4 in Figure 1), and CaP processes a set
of matrices by padding pixels (Step CaP in Figure 4). Since CaP is
a dual of OaA, we can extend the &* operator (Section 2.1). If the
superscript x is negative, then we use &* to compute step b in
Figure 1. If x is positive, we use ®* to compute I = ®*(I) in CaP.

In summary, we CaP the I} 4, ¢ array so that input of BatchX fin X

2 —
B‘zltzCh X finXlimg , where limg = d-limg+(d—

1) (lern — 1). We then apply OaA to 1. Abbreviate such operations

limgz is reshaped to

o
o

N
I3

[

—

—

o Native
—— OaA N=32 = N=Any

CaP-OaA N=32

ormalized computation complexity

51 — 0aA N=16
CaP-OaA N=16

N

0.0
0

20 40 60 80 100
limg

Figure 5: Comparison of computation complexity

as CaP-OaA. It is worth noticing that the various frequency domain
convolution algorithms discussed so far are closely related to each
other. CaP-OaA reduces to OaA when d = 1. OaA further reduces
to native frequency domain convolution when N > limg + lxern —
1. Therefore, CaP-OaA is the most general version among these
frequency domain convolution algorithms. CaP-OaA also achieves
the highest hardware efficiency.

We further quantitatively analyze the computation complexity of
CaP-OaA. CaP introduces a new variable d whose value can be set
to approximate the ceiling function in Equation 5. It can be shown

: _ N_(lkern_l)
that by setting d = o N oo

Greatest Common Divisor), the complexity of CaP-OaA is:

) (where gcd means

limg + lkern -1)2 (7)

Orp_ Co - fin - L L9 kerm -
CaP-0aA < C2 - fin* fout (1_(lkern_l)/N

We compare OaA and CaP-OaA with the native approach as
follow, where Onative = C2 - fin * fout * (limg + lkern — 1)2.

00as _([%] 'N)Z

Onative limg + lkern — 1 8)
OcaP-0aa (1)2
Onative 1- (lkern - 1)/N

The native approach achieves the lowest computation complex-
ity compared with OaA and CaP-OaA. However, it requires the
hardware to support FFT of arbitrary size. In the best case, OaA
requires the same amount of computation as the native approach.
Yet performance of OaA is highly dependent on N. As for CaP-OaA,
as long as N is sufficiently larger than (Ix.,, — 1), it ensures its
computation complexity to be close to the native approach.

Figure 5 verifies our computation complexity analysis on the
three algorithms. We vary [jp,g4 from 3 to 100, and fix I, to be 3.
Complexity of CaP-OaA and OaA are normalized by complexity of
the native approach. Colored areas for CaP-OaA show the possible
ranges of its computation complexity according to Equation 8.

Figure 2b shows the number of operations for three CNNs using
CaP-OaA. Compared with Figure 2a, we conclude that given any
fixed N, CaP-OaA achieves low computation complexity consis-
tently for convolution layers of various lg,,, and arbitrary ljmg.

3.3 Frequency Domain Loop Tiling

The CaP-OaA technique manipulates the data dimensions ;4 and
Ik ern- To block data of convolution layers into identical shapes, we
still need optimization on the fi, and fo,; dimensions.

We revisit Algorithm 1. Tiling of the loop dimensions in lines 5
and 6 performs partitioning of fi,, and foy;. In runtime, the kernel
filters and image data are partitioned into fixed shapes, and the
tiles are loaded onto FPGA. Tiling on top of CaP-OaA makes the
data flow of diverse CNNs on a target device identical to each other.
The tiling factor f is the same for various convolution layers. After
CaP-OaA transforms the kernel filters and images to an uniform
N x N shape, value of f becomes independent of the CNN model
parameters, and is solely bound by the on-chip memory size. The
motivation for loop tiling is to reduce the communication volume
to external memory by increased reuse of on-chip data [4]. For
frequency domain convolution, tradeoff exists between N and f to
balance computation complexity and data reuse. Analysis on the
algorithm-architecture co-design is made in Section 5.

Although loop optimization for CNNs on FPGAs has been ex-
tensively studied, previous work [4, 8, 12] focused on convolution
in space domain. Existing techniques cannot be directly applied to
frequency domain CNNss, since data flow of sliding window opera-
tions is different from Hadamard product operations. On the other
hand, our three techniques proposed in Section 3.1, 3.2 and 3.3 can
all be understood as loop optimizations in frequency domain. OaA
is analogous to loop tiling of l;;g, and CaP is analogous to loop
tiling and unrolling of the Batch dimension.

With the optimizations in Section 3.1, 3.2 and 3.3, we derive
Algorithm 2 from Algorithm 1. Lines 6 to 13 shows the workload on
FPGA. The rest of the algorithm specifies the operations by CPU.
Loop unrolling of lines 9 and 10 is discussed in Section 4.

3.4 Composing a Complex Image

Fourier transform converts a real number image into complex num-
ber representation. A straightforward implementation feeds input
image data to the real channel and zeros to the imaginary channel.
To better utilize the hardware resources, a better implementation
feeds two images within a batch to the real and imaginary channels
simultaneously. Thus, given two images I1, I and kernel filter K, we
perform (I +]-I2)+K = F~} (F(l1+j-12)o F(K)) = (11 =K)+j- (2 K),
where I, I and K are all of real values.

Composing a complex image reduces the computation complex-
ity by half, and doubles the efficiency of hardware DSPs. The tech-
nique in this section can be easily combined with OaA-CaP.

4 SYSTEM ARCHITECTURE

We define throughput (bandwidth) as the number of complex words
transferred per unit time. Also, the number of DSPs used in im-
plementing a complex multiplier-accumulator as the unit of DSP
resources; bytes per complex word as the unit of on-chip memory.
Hardware parallelism is measured in terms of number of parallel
operations on complex data.

4.1 Data Reuse Scheme

Image or kernel oriented data reuse schemes have both been ex-
plored in previous work [3] for spatial convolution. In our design,

Algorithm 2: Batch processing of a convolution layer using
CaP-OaA and fin, four loop tiling
Input:I'2Y€" of shape Batch X fin X limgz
K/T€4 of shape fous X fin x N%; K/Teq = F(Klayer)
Output: M'Y¢" of shape Batch X fous X li’mg2
1 for b = 0 to (Batch — 1), stride by D do

// D=d?

2 for m = 0 to (four — 1), stride by f do
3 for n = 0 to (fin — 1), stride by f do
ile leern—1 layer
4 e — o US—
tile,freq freq
> K A Km :m+f,n:n+f
/* FPGA starts to process tiled data. =*/
6 for i, j iterating matrices of olrart([tile) do
7 forn’ =0to(f-1)do
in,freq in,padded
s | plred Fppedded)
9 form’ =0to (f — 1) do
10 forn’ =0to(f —1)do
- P Pln .freq Ktlle freq
n',i,j m’,n’
12 PO'ft.’f_req — Pout freq P’
m',i,j m’,i,j
out —1/pout,freq
13 szj(_}- (Pm”)
/* FPGA ends processing. */
14 form’ =0to(f —1)do
15 M — @_Ikern”(Po'ft* *)
16 M”" « Reshape M’ to D X 1 X (limg)2
layer layer 77
17 Mb:b+D,m+m’ < Mb:b+D,m+m’ +M

s return Mlaver

=

the element-wise Hadamard product results in a clean data move-
ment pattern, so we simply calculate the amount of data reuse to
make our design choice. Reuse of image pixels are proportional
to f, and reuse of kernel pixels are proportional to the batch size.
We use the kernel-oriented data reuse scheme. Before execution, a
tile of kernel filters is pre-loaded onto FPGA. The kernel loading
time is amortized for a large enough batch. Our reuse scheme is
equivalent to loop interchanging of line 1 with 2, 3 in Algorithm 2.

4.2 Overall System Design

Based on Algorithm 2, we design the hardware modules on FPGA
to execute the workload from line 6 to 13. Prior to FPGA execu-
tion, a kernel filter tile K*!/&-/7€4 5 pre-loaded to on-chip memory
BUFk. When data streams in from external memory, a 2D FFT mod-
ule transforms partitions of I'4Y€" into frequency domain (lines 7,
8). Outputs of the FFT module are stored in the on-chip memory
BUF. After reading matrices from BUF; and BUFk, the Hadamard-
Accumulation (HAC) module performs element-wise multiplication-
accumulation (lines 9 to 11). HAC feeds its accumulated outputs to
a 2D IFFT module, which transforms the partitions back to space
domain (line 13). The IFFT module sends its outputs directly to
external memory. Figure 6 shows the overall system design. Note

@ From external memory N N2 O(3): U.-N? (4): .
B To external memory o Fraw "Feol 2): N2 (3): U @) Flow Flot
1D = &/ a
> 1D @ W2 g » 1D 1D
) 2 & 2 Q)
z i H o z
1D 1D — @ N £ ™ 1D 1D —
2D FFT HAC 2D IFFT

Figure 6: Overall FPGA architecture

that a small buffer is placed between the HAC and IFFT module. It
serves as a parallel-serial converter. We will see later on that data
parallelism of HAC should be larger than the IFFT module.

HAC module. The key benefit of frequency domain convolution
is that sliding window operation in spatial convolution turns into
Hadamard product operation. Thus, all loop carried dependencies
are automatically eliminated. Massive parallelism can then be ex-
ploited by the HAC module. Based on the FPGA resources, we
unroll the loop of line 9, Algorithm 2. Each cycle, HAC takes as
input Uk slices of N X N matrices from BUFk, and 1 slice from
BUF}. Each slice is also fully unrolled to a 1D array of length N2.
Thus, data parallelism of HAC is Uy - N%. Every f2/Ux cycles, HAC
traverses the f2 slices of K*!/&:/7€4_During the period, f slices of
inputs are read from BUF], and each slice is reused for f times. On
the output side, f slices are generated and fed in the IFFT module.

Throughput of HAC is thus Uk - NTZ

2D FFT (IFFT) module. FFT on a N X N complex number matrix
involves two computation phases. In both phases, N-point 1D FFT
is performed on each of the N rows of the 2D matrix. Input to phase
1 is the original matrix. Input to phase 2 is the transposed output
matrix of phase 1. For each phase, a straightforward implementation
deploys N 1D FFT pipelines where each 1D FFT pipeline supports
data parallelism of N. Since the throughput of 2D FFT is bounded
by the external memory bandwidth and the throughput of the
HAC module, we may either increase the data parallelism of 2D
FFT by unrolling the loop in line 7 in Algorithm 2, or decrease
the parallelism by folding the FFT pipelines. Under the current
memory technology, it is very unlikely that the external bandwidth
is large enough to transfer more than N? complex words per cycle
(N: order of 10! or 10%). Thus, we set the FFT unrolling factor to
be 1. Folding can be performed along each of the two dimensions.
Let F.o; and Fyo4 be the column and row folding factors. Column
folding reduces the number of 1D FFT pipelines from N to FN .Row
folding reduces data parallelism of each 1D FFT pipeline from N to
% [2]. Data parallelism of the 2D FFT module is thus z— le Ff\j —.

Matrix transpose between phase 1 and phase 2 for the 2D FFT
architecture is implemented by a Streaming Permutation Network
(SPN) [2]. The resource efficient in-place permutation in time algo-

rithm of SPN requires a single port memory of size N? to support
N

Frow "

For the 2D IFFT module, we use the same architectural parame-
ters as 2D FFT (F,,; and Frow).

data parallelism of Fl,

On-chip memory. Data in BUF; are reused f times (f/Uxk times
temporal reuse, Ux times spatial reuse) before they are replaced by
the next tile. Thus, we use the double buffering technique for BUF.

Data communication latency is completely hidden if throughput of
HAC is no less than the streaming FFT module (Section 5.1). BUFk
and BUF; store one kernel tile and one image tile respectively. So
the BUFy size is Mg = f2 - N? and the BUF; size is M = f - N2.

5 ARCHITECTURE MAPPING

Define M, L as the total memory size and DSP resources on chip, B
as the total external memory bandwidth.

5.1 Performance Model

By our data reuse scheme, we ignore the kernel communication
cost and utilize the full bandwidth B to read and write image tiles.

By calculating the throughput of each individual hardware mod-
ule, we derive the overall system throughput Rgys:

2
N N N 1 B})

% 7, 5

To execute one layer for a batch of complex images, we first keep
one kernel tile in BUFy, and load the image tiles belonging to T one
by one into BUFy. Then we replace the data in BUFk with the next
kernel tile belonging to the same layer, and repeat the loading of
image tiles. The execution time averaged for one input I is:

Rs s:min{ C—_—
Y Feot Frow

. : N2
tng = [22] 2] [P Do s o
f f N —lkern +1 Rsys d

We may further simplify Rsys. First of all, we observe that the
architectural parameters should be set such that throughput of FFT,
IFFT and HAC are matched. Secondly, for L and M, we observe that:
(1) Most of the DSP resources are consumed by the HAC module
to perform Hadamard product. This observation is consistent with
the conclusion in Section 3.1. (2) Most of the on-chip memory is
consumed by the kernel tile. The size of the kernel tile is in the
order of f2 - N2, and the size of the image tile is in the order of
f - N%. Thus, we approximate Rsys as follows.

i L 1
Rsys = min {N— —_—, - ‘B} (11)

WM 2

We then get throughput of a convolution layer by ¢4 and Rsys.

5.2 Device Coefficient

The two terms in Equation 11 show the potential computation and
communication bounds of the target device. As N increases, the
system shifts from being computation bound to communication
bound. We analyze the system performance for various N. Based
on this, we quantitatively categorize FPGA devices by L, M and B.

Case 1: small N. The system throughput Rsys is determined by L

and M. So/l_?iys = N~ﬁ,Byapproximating [J%-HJ%] = %%

. We update Equation 10:

limg -~ d‘(limg"'lkern_l)
and |'Nflkern+l‘| ~ N-lpern+l

N 2
t{mg ~ fin " fout * (limg + lkern — - (m))
ern

~ =

12)

Case 2: large N. The system throughput Ry is determined by B.

Therefore, Rsys = %~B. By approximating [f}—"][j%] X %%

and ~ 1. We derive Equation 10 as:

N
N-lgern+1

ti,;ng zfin 'fout '(limg +lkern _1)2 (ZN) ﬁ (13)

As N grows from a small value, latency ti’ mg decreases due to
lower computation complexity (Section 3.1). However, with limited
on-chip memory size, larger N means smaller f and lesser data
reuse. At some point, external bandwidth saturates. As N increases,
latency ¢, 4 becomes larger, since communication cost then be-
comes the dominant factor. When sweeping N, expressions on
the right side of Equation 12 and 13 forms two curves, which are
the performance asymptotic bounds. We define the common term
fin* fout * (Uimg + lkern — 1)? as the model coefficient Kcnyn, which
scales performance of the architecture by the complexity of CNN.
Imagine a device with infinite bandwidth B. It is never bound by
communication. Thus, its maximal achievable throughput according

to Equation 12 is RII** = max t,# = L1 . L, which is the

comp img Konn '
theoretical computational upper bound.

Dividing the reciprocal of ¢, gand L g by RiGip» We get the
asymptotic bounds for normalized throughput:

Ceomp(N) :(%)2 (14)
Ceomm(N) =(B- M2 -L7) - (ﬁ)

We define Kgpga = B - M2 - L1 as the device coefficient. For a
target device, it measures the ratio of communication capacity over
computation capacity. Based on Kppga, we map the architecture
onto the target device by balancing the computation complexity and
data reuse. Details of the mapping are shown in the next section.

5.3 Design Space Exploration

We note some important properties of Ccomp and Ceomm- The
model coefficient Kcnn disappears in the process of normalization.
Furthermore, Kppga captures the device characteristics in Ceomm-
For diverse CNNs, we can use a constant I, (= 3) to approximate
Ccomp, so the computation bound is a single curve. On the other
hand, for a given target device, the communication bound is also
a single curve since Kppga keeps as a constant regardless of the
CNN:ss. In this sense, Kppga intrinsically determines the device
performance, and the normalized throughput is independent of the
CNN model parameters.

With Kgpga, design space exploration is as simple as identi-
fying the intersection point of two curves. We propose a design
chart (Figure 7). The red and blue solid lines are the computation
and communication rooflines bounding the actual performance.
Intersection of the rooflines shows the optimal N for the target
device. Parameters f, Uk, Frow and F.,; are calculated based on N.
Algorithm 3 shows the procedure for a radix-2n FFT architecture.

In the design chart, we use the device coeflicient (Kstratix—v)
of our experimental platform as reference. For this device, N =
16 is the best configuration. For devices with their coefficients

Algorithm 3: Design space exploration using the design chart
Input:L, M, B of the target device

Output: N chosen for the architecture

Krpga < B - M% L7t

2 Get the curve of communication bound Ccomm(N)

Ny «Intersection of Ceomm(N) and Ceomp(N)

4 N’ « 2llog, Nol, N« 2Mlog, Nl
return Ceomp(N’) > Ceomm(N") ?

-

w

N’:N"

«

—

e
®

2
o

I
-

I
o

— Comp bound

Throughput (Normalized)

— Comm bound
L L

0 10 20 30 40 50 60 70

FFT size N

I
=3

Figure 7: Design chart for hardware mapping

falling between 0.2 to 0.35, 0.52 to 1.05, 1.45 to 2.37, the designs
are computation bound. Optimal N is 8, 16 and 32 respectively
(these are shown by three red marks a, b, c). Similarly, for other
devices, the designs are communication bound (design points falling
between b and b, ¢ and ¢’). Using the design chart, we can identify
target devices that are best suited for our architecture. Devices
with their roofline intersections falling at the blue vertical lines
(N = 8,16,32, 64) have perfectly balanced resources in terms of L,
M and B (e.g., devices with Kppga = 0.2, 0.5 or 1.18).

6 AUTOMATIC CODE GENERATION

We have developed a tool [20] to automatically generate the archi-
tecture on the target device. Figure 8 shows the workflow of the tool.
The inputs are the CNN model parameters for each convolution
layer (limg, lkern» fin and fouy), and the meta data of the target de-
vice (B, L and M). The outputs includes C++ code for book-keeping
the data blocks (lines 1-5 and 14-18, Algorithm 2), and synthesiz-
able Verilog performing the computational expensive convolution
(lines 6-13, Algorithm 2). The Mapping Engine feeds the CaP-OaA
parameters (N, d) and tiling factor (f) into Software Generation
Engine, and feeds architectural parameters into Hardware Genera-
tion Engine. Optionally, users can specify additional constraints to
the tool such as available FFT sizes and maximum d.

Software Generation. Although the optimal batch folding factor
d varies across convolution layers, we use a uniform d for all layers
of a CNN in implementation. This ensures that the output of the
previous layer can be directly fed into the following layer without
further layout rearrangement.

Hardware Generation. The 2D FFT module consists of 1D FFT
pipelines and Streaming Permutation Networks (SPN) for matrix

Control Bit Generation |

CNN FPGA Const /
Param Param -raints / |
X /

2 2

/ v v
Hardware Mapping Engine / SPN Addr
/ Gen Gen
N f.d g f l;’(' / v v
L Tow’ Ucol ¢
SW Gen W Gen FFT HAC
e Bsine Gen Gen
v
Assembler |

: S
/C++/ /Verilog/ \\l

Figure 8: Tool workflow

transpose. We take the 1D FFT template from [13]. SPN is a folded
CLOS network including two spatial permutation stages and one
temporal permutation stage. We implement the in-place permuta-
tion in time algorithm [2] to generate the control bits. HAC includes
a memory controller to fetch data from BUF; and BUFk. Since our
architecture does not involve any runtime reconfiguration, Hard-
ware Generation Engine statically computes all the SPN control bits
and HAC input addresses in design time. The Assembler connects
the 2D FFT, 2D IFFT, HAC, BUF; and BUFg based on Figure 6.

7 EXPERIMENTAL RESULTS

7.1 Experimental Setup

We use Intel Heterogeneous Research Platform (HARP) [1] for eval-
uation. HARP has shared memory accessible to the CPU and FPGA.
The FPGA is an Intel Stratix V GXA7 device, with 5 GB/s band-
width to external memory, 6.25 MB on-chip memory, 256 DSPs and
234720 ALMs. The CPU of HARP is a 10-core Intel Xeon E5-2600 v2
processor. We use 16-bit fixed-point data representation to compute
CNNs. The designs were synthesized by Quartus II (version 13.1.0).

In the following, throughput is calculated as the total number of
operations for spatial convolution divided by the average execution
time per image for our frequency domain approach. Numerator for
spatial convolution let us make fair comparison with other works.
The execution time is the actual execution time on HARP.

The architecture for all CNNs under evaluation is configured as:
N =16, f =64, Uk = %, Frow =4, F.o; = 16. We set an upper limit
for d (< 15) to bound the batch size.

For workload distribution between FPGA and CPU, FPGA exe-
cutes all convolution layers of AlexNet, VGG16 and FCN-16s except
the first convolution layer of AlexNet, while the CPU executes
all the remaining layers (pooling, ReLU, fully connected and first
convolution of AlexNet). In summary, the CPU executes 15%, 1%
and 1% of the total computation for AlexNet, VGG16 and FCN-16s
respectively. We implement the first convolution layer of AlexNet
using the BLAS [17] library. By a simple batch processing pipeline,
execution time of CPU is completely hidden by FPGA.

7.2 Impact of Algorithmic Optimizations

To vary the input image size, we use AlexNet and VGG16 to execute
feature extraction by skipping their fully-connected layers. We
execute all layers of FCN-16s.

Effect of CaP. We use the architecture configuration as specified
in Section 7.1. We vary ljmg of the first convolution layer from 160

to 304 for AlexNet and VGG16, and from 320 to 608 for FCN-16s (In
other words, I, g of the last convolution layer for the three CNNs
vary from 10 to 19). Figure 9 shows the comparison of computation
complexity for frequency domain convolution using CaP-OaA, OaA
and spatial convolution. Each bar is vertically stacked by the number
of operations for each convolution layer of the CNNs. Figure 10
shows the comparison of the measured throughput on HARP.

When ljmg is divisible by (N = lyerp, + 1) (e.8., limg = 224 for
AlexNet and VGG16), performance of OaA is identical to CaP-OaA.
However, in other cases, CaP-OaA delivers much better perfor-
mance than OaA. For example, when ljmg = 240 for AlexNet,
VGG16 and limg = 352 for FCN-16s, CaP-OaA leads to 2.3%, 1.5%
and 1.7X complexity reduction, and 2.3%, 1.5% and 1.7X throughput
improvement. Furthermore, we observe that the performance of
OaA is highly sensitive to image sizes. For AlexNet and VGG16,
performance drops significantly when the image size increases from
224 to 240. This reflects the padding effect of OaA.

Effect of N. Next, we experiment how selecting various N af-
fects the throughput of the system. Since parameters N and f are
together dependent on the on-chip memory size, by varying N, we
are exploring the effect of loop tiling as well. Figure 11 shows the
normalized throughput of the three CNNs on the design chart when
using N = 8,16, 32. The corresponding f values are 128, 64, 32.

As predicted by the design chart, N = 16 is the best configu-
ration on the Stratix-V GXA7 device. When N = 8, the increased
computation complexity degrades the performance. When N = 32,
the low data reuse makes external bandwidth the bottleneck. Fur-
thermore, despite the dramatically different network structure, the
normalized throughput of the three CNNs are very close to each
other. This demonstrates the effect of our algorithmic optimization.

7.3 Comparison with State-of-the-Art

For AlexNet and VGG16, we use the ImageNet dataset (I;mg = 224).

Table 2 summarizes the comparison with state-of-the-art designs.
All the designs except [21] use similar or lower precision data repre-
sentation than our designs. In [21], frequency domain convolution
using the OaA technique was employed. However, their analysis
was based on a metric called "delay-multiplier product” evaluating
convolution of a single image rather than a complete layer. Using
the same FPGA, we show 9.4x (AlexNet) and 5.4% (VGG16) speed
up in throughput as a result of a deeper analysis on frequency do-
main convolution. All other works are based on spatial convolution.
Compared with [18] which uses the same target FPGA and data
representation as this project, we achieve 5.8X speedup. Compared
with [7], [8] and [12], when we use the same data representation (16-
bit fixed point), our designs achieve 1.4%, 4.9X and 1.0X speedup,
even though our target device has 14.0%, 3.4X and 5.9% less DSP
resources. Using a device with 5.9 more DSPs, [22] achieves 2.7X
higher throughput than us. One main reason is the difference in
the clock rate. We can not achieve higher clock rate, since HARP
requires the FPGA to operate at exactly 200 MHz.

To understand such significant improvement in throughput, we
use [18] as an example to show the improvement breakdown. Out of
the 5.8X improvement, approximately 3x comes from the reduction
in computation complexity (Figure 2b). The remaining 2X comes
from the clock rate improvement. The Hadamard product operation

leads to much less number of operations and much simpler data
flow compared with the sliding window operation.

To the best of our knowledge, this is the first work that accel-
erates FCN-16s on FPGAs. As shown in Figure 10, approximately,
throughput of 550 GOPS is achieved for images of various sizes.

8 RELATED WORK

Accelerating spatial convolution has been extensively studied from
the perspective of loop operation optimization [4, 12] and data flow
optimization [3]. Work in [4] proposed a roofline model to capture
various techniques including loop tiling, unrolling and interchang-
ing. [12] further optimized performance by a thorough design space
exploration. [22] boosted throughput under the OpenCL framework.
Spatial convolution based approaches will eventually be bound by
the computation complexity of the convolution algorithm. On the
other hand, alternatives such as convolution by Winograd trans-
form and frequency domain convolution have been proposed and
implemented [10, 14, 21]. Winograd based approaches do not easily
generalize to CNNs with various kernel window sizes. While the ap-
proaches based on frequency domain convolution are more flexible,
further optimizations to [21] can be performed when processing
high dimensional data of convolution layers (this work).

9 CONCLUSION

We presented a framework for generating high throughput CNN
accelerators. Combining the CaP, OaA and frequency domain loop
tiling techniques together, our framework generates architectures
accelerating diverse CNNs without runtime reconfiguration.

In the future, we will explore the hybrid algorithm combining
convolution in space and frequency domain. Spatial convolution is
as efficient as frequency domain convolution for 1 X 1 kernels. In
such cases, we may switch to spatial convolution which leads to
better hardware utilization. In addition, as techniques have been
developed to make use of the sparsity in spatial convolution, we will
explore if similar techniques can be applied in frequency domain.

10 ACKNOWLEDGEMENTS

This work was supported by the US NSF under grants CNS-1643351,
ACI-1339756 and CCF-1320211. This work is also supported in part
by Intel Strategic Research Alliance funding. Equipment grant from
the Intel Hardware Accelerator Research Program is gratefully
acknowledged.

REFERENCES

[1] 2015. Intel Inc. Xeon+FPGA Platform for the Data Center. (2015). https://www.
ece.cmu.edu/calem/carl/lib/exe/fetch.php?media=carl15-gupta.pdf

[2] R. Chen, H. Le, and V. K. Prasanna. 2013. Energy efficient parameterized FFT
architecture. In 2013 23rd Intl. Conf. on Field programmable Logic and Applications.

[3] Y. H. Chen, J. Emer, and V. Sze. 2017. Using Dataflow to Optimize Energy
Efficiency of Deep Neural Network Accelerators. IEEE Micro 37, 3 (2017).

[4] Chen Zhang, et al. 2015. Optimizing FPGA-based Accelerator Design for Deep
Convolutional Neural Networks. In Proceedings of the 2015 ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays (FPGA ’15). ACM.

[5] AliDaher, et al. 2010. Overlap-save and overlap-add filters: Optimal design and
comparison. IEEE Transactions on Signal Processing 58, 6 (2010).

[6] P.Duhamel and H. Hollmann. 1984. ‘Split radix’ FFT algorithm. Electronics Letters
20, 1 (January 1984).

[7] Huimin Li, et al. 2016. A high performance FPGA-based accelerator for large-
scale convolutional neural networks. In 2016 26th International Conference on
Field Programmable Logic and Applications (FPL).

%10° AlexNet %1010 VGG16 101 FCN-16s
407 mm Car B CaP-OaA 55| T CaP-Oar
© 55 W OaA w5 M Oan w0 - 0ar
B B Spatial 5 | mm Spatial s B Spatial
£ 3.0 £, £ 201
5& 1 é‘ :&; L5
) =3 =
B 2.0 B B
& 151 I I £, & 10 |
5 1.0 I I S § ' I
z] Z Z 051 J 1 L]
1 g m W Ll
TR N R B U6 o kDb 0 11 12 13 14 15 16 17 18 19 R R R VN R R
(160) (176) (192) (208) (224) (240) (256) (272) (288) (304) (160) (176) (192) (208) (224) (240) (256) (272) (288) (304) (320) (352) (384) (416) (448) (480) (512) (544) (576) (608)
Image size Image size Image size
Figure 9: Number of operations performed by various convolution algorithms
Table 2: Comparison with state-of-the-art AlexNet and VGG16 implementations (FX: fixed point, FT: floating point)
[7] [18] [21] [8] [12] [22] [21] Proposed: ~ Proposed:
AlexNet AlexNet AlexNet VGG16 VGG16 VGG16 VGG16 AlexNet VGG16
FPGA Virtex-7 Stratix-V Startix-V Zync Arria-10 Arria-10 Stratix-V Stratix-V Stratix-V
VC709 GXA7 GXA7 XC7Z045 GX1150 GX1150 GXA7 GXA7 GXA7
Frequency (MHz) 156 100 200 150 150 385 200 200 200
Precision 16 bitFX 8-16 bit FX 32 bit FT 16 bit FX 8-16 bit FX 16 bit FX 32 bit FT 16 bit FX 16 bit FX
DSP Usage 2144 (60%) 256 (100%) 224 (88%) 780 (89%) 1518 (100%) 1378 (91%) 224 (88%) 256 (100%) 256 (100%)
Logic Usage 274K (63%) 121K (52%) 200K (85%) 183K (84%) 161K (38%) - 200K (85%) 107K (46%) 107K (46%)
On-chip RAM 956 (65%) 1152 (61%) 1208 (64%) 486 (87%) 1900 (70%) 1450 (53%) 1208 (64%) 1377 (73%) 1377 (73%)
Throughput (GOPS) 565.9 134.1 83.0 137.0 645.3 1790 123.5 780.6 669.1
200 AlexNet [8] Jiantao Qiu, et al. 2016. Going Deeper with Embedded FPGA Platform for Con-
% (CaP-OaA volutional Neural Network. In Proceedings of the 2016 ACM/SIGDA International
o AlexNet Symposium on Field-Programmable Gate Arrays (FPGA °16). ACM.
2 6004 AT 0aA [9] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. Imagenet classifi-
8 VGGi6 cation with deep convolutional neural networks. In NIPS’12.
= O CaP-OaA [10] Andrew Lavin. 2015. Fast Algorithms for Convolutional Neural Networks. CoRR
2 400 VGGIE abs/1509.09308 (2015).
_%* == [11] Jonathan Long, Evan Shelhamer, and Trevor Darrell. 2014. Fully Convolutional
OaA 8
0 FON16s Networks for Semantic Segmentation. CoRR abs/1411.4038 (2014).
g O (CaP-OaA [12] Yufei Ma, et al. 2017. Optimizing Loop Operation and Dataflow in FPGA Ac-
5 2007 FCN16s celeration of Deep Convolutional Neural Networks. In Proceedings of the 2017
——d-- . ACM/SIGDA Intl. Symposium on Field-Programmable Gate Arrays (FPGA ’17).
OaA ymp g Y
[13] Markus Puschel, et al. 2005. SPIRAL: Code Generation for DSP Transforms.
0 0 11 12 13 14 15 16 17 18 19 Proceedi.ngs”af the IEEE, special issue on “Program Generation, Optimization, and
Image size (Last layer) Adaptation” 93 (2005).
- mg [14] A. Podili, C. Zhang, and V. Prasanna. 2017. Fast and efficient implementation
of Convolutional Neural Networks on FPGA. In 2017 IEEE 28th International
Conference on Application-specific Systems, Architectures and Processors (ASAP).
Figure 10: Throughput of AlexNet, VGG16 and FCN-16s [15] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. CoRR abs/1409.1556 (2014).
10 T Ty RIRSEENEICEN T X AloxNet [16] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed,
= \ > <.~ + vGGis Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-
2 081 Y FON-16s novich. 2014. Going Deeper with Convolutions. CoRR abs/1409.4842 (2014).
= [17] Xianyi Zhang, et al. 2017. OpenBLAS. (2017). "www.openblas.net”
=} [18] Yufei Ma, et al. 2016. Scalable and modularized RTL compilation of Convolutional
S 061 Neural Networks onto FPGA. In 2016 26th International Conference on Field
& Programmable Logic and Applications (FPL).
s] [19] Hanging Zeng, Ren Chen, and Viktor K. Prasanna. 2017. Optimizing Frequency Do-
& 04 . main Implementation of CNNs on FPGAs. Technical Report. University of Southern
o0 N 0.50 S~ _— California. http://ceng.usc.edu/techreports/2017/Prasanna%20CENG-2017-3.pdf
2 024 [| DAty boee T - [20] Hanqing Zeng, Chi Zhang, and Viktor Prasanna. 2017. Fast Generation of High
ﬁ 035~ ==mmmmeee__ Throughput Customized Deep Learning Accelerators on FPGAs. In 2017 Interna-
- tional Conference on ReConFigurable Computing and FPGAs (ReConFig).
| l l | L gurabl puting and 2)
0.0 0 0 20 20 o 0 P 20 [21] C.Zhang and V. Prasanna. 2017. Frequency Domain Acceleration of Convolu-
FLFT size N ’ tional Neural Networks on CPU-FPGA Shared Memory System. In Proceedings of
the 2017 ACM/SIGDA Intl. Symp. on Field-Programmable Gate Arrays (FPGA ’17).
[22] Jialiang Zhang and Jing Li. 2017. Improving the Performance of OpenCL-based

Figure 11: Actual throughput (normalized) for various N

FPGA Accelerator for Convolutional Neural Network. In Proceedings of the 2017
ACM/SIGDA Intl. Symposium on Field-Programmable Gate Arrays (FPGA ’17).

